oxygens enclosing a layer of iodine, parallel to the (010) plane. The H_5IO_6 structure is found by displacement of the atoms and a slight deformation of the ideal unit cell as shown in Figs. 1 and 2.

In the ideal structure half of the oxygens are in the position y=1/16 and the other half in the position y=3/16. The iodine atoms lie in the plane y=1/8. In the actual structure these values are:

The unit cell contains four of these double layers of oxygen perpendicular to the b-axis, connected by the

Table 2

 $\begin{array}{l} O_1(x,\,y,\,z) - O_3'(x,\,y,\,z) = \,2\cdot76 \ \text{\AA} \\ O_6(x,\,y,\,z) - O_4'(x,\,y,\,z) = \,2\cdot79 \\ O_2(x,\,y,\,z) - O_5'(x,\,y,\,z) = \,2\cdot69 \\ O_1(x,\,y,\,z) - O_2(\bar{x},\,\bar{y},\,\bar{z}) = \,2\cdot64 \\ O_6(x,\,y,\,z) - O_4(\frac{1}{2}+x,\,\frac{1}{2}-y,\,\frac{1}{2}+z) = \,2\cdot81 \ \text{\AA} \end{array}$

Note: The parameters in brackets give the symmetry relation between the oxygen atoms and the primes refer to an oxygen atom in neighbouring unit cells (see Fig. 2). symmetry elements. As the structure of $Al(OH)_3$ is also derived from the same ideal model, the crystal structure of $H_5 IO_6$ is closely related to that of $Al(OH)_3$ (Megaw, 1934). In $Al(OH)_3$ two of the three oxygen octahedra are filled by aluminium. In $H_5 IO_6$ only one of the three octahedra contains an iodine atom. The shortest distances between oxygen in neighbouring octahedra are shown in Table 2. These distances give the impression that an oxygen octahedron in a double layer is linked by three hydrogen bonds to octahedra of adjacent layers. An attempt will be made to determine the positions of the hydrogen atoms from neutron diffraction data.

I wish to thank Dr Aafje Vos and Prof. Dr E. H. Wiebenga, University Groningen, the Netherlands, and Prof. Dr J. A. Goedkoop, Reactor Centrum Nederland, the Netherlands for their valuable suggestions and their interest in the progress of this work.

References

BEEVERS, C. A. & ROBERTSON, J. H. (1950). Acta Cryst. 3, 164.

Curtis, A. R. (1959). AERE-R 3134. Garrett, B. S. (1954). ORNL-1745. Megaw, H. D. (1934). Z. Kristallogr. 87, 185.

Acta Cryst. (1961). 14, 316

Lattice constants and space group of sodium tungstate dihydrate.* By CARL W. F. T. PISTORIUS[†] and W. E. SHARP, Institute of Geophysics, University of California, Los Angeles 24, California, U.S.A.

(Received 14 August 1959)

The crystallographic properties of $Na_2WO_4.2 H_2O$ have only been superficially investigated. Marignac (1863) found that the crystalline substance is orthorhombic bipyramidal. His goniometric measurements indicate that

$$a:b:c=0.8002:1:0.6470$$
.

Baker's Analyzed Reagent grade $Na_2WO_4.2 H_2O$ was used in the present investigation. The company's analysis is as follows: insoluble matter 0.002%; alkalinity (as Na_2CO_3) 0.08%; chloride (as Cl) 0.001%; nitrogen compounds (as N) 0.0003%; sulfate (as SO_4) 0.003%; arsenic (as As) 0.0001%; heavy metals (as Pb) 0.0002%; iron (as Fe) 0.0001% and molybdenum (as Mo) 0.0001%. The substance was used without further purification.

Under the microscope the crystals have the appearance of basal tablets, elongated parallel to a or b, with a perfect {001}, and less perfect {110} and {120} eleavages. The optic plane is (010); r < v strong. The refractive indices for NaD light are

$$\begin{split} n_x &= 1.5530 \pm 0.001, \ n_y = 1.5535 \pm 0.001, \\ n_z &= 1.5650 \pm 0.001; \ n_z - n_x = 0.012; \\ (+)2V &= 26^\circ; \ X = a, \ Y = b, \ Z = c \ . \end{split}$$

* Publication No. 202 of the Institute of Geophysics.

† Present address: National Physical Research Laboratory, South African Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, Transvaal, Union of South Africa. The X-ray powder diffraction pattern of finely ground $Na_2WO_4.2 H_2O$ at 25 °C. was obtained in a Norelco high angle recording diffractometer, using Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å) and a Ni filter. The scanning speed was $1/8^{\circ}$ (2 θ) per min. High-purity sodium chloride was used as an internal standard.

The assignment of the peaks was made with the aid of some runs emphasizing preferred orientation, and by using the goniometric value for a:b:c. All of the observed diffraction peaks could be satisfactorily assigned as being due to an orthorhombic lattice with the following unit-cell dimensions, obtained by a least-squares treatment:

$$a_0 = 8.456 \pm 0.005, \ b_0 = 10.601 \pm 0.005, \ c_0 = 13.842 \pm 0.005 \text{ Å}$$
.

The present axial ratio,

$$a_0: b_0: c_0 = 0.7978: 1: 2(0.6530)$$
,

agrees reasonably well with the goniometric value (Marignac, 1863).

The calculated density of Na₂WO₄.2 H₂O at 25 °C., assuming 8 molecules per unit cell, is 3.532 g.cm.⁻³. Clarke & Davis (1877) found that the pycnometric density at 19 °C. is 3.2314 g.cm.⁻³. However, according to Zambonini (1923) this value is too low. His pycnometric measurements on carefully selected material gave a density at 15 °C. of 3.50 g.cm.⁻³, which is in fair agreement with X-ray density.

The observed and calculated d-spacings, assigned ind T

Table 1 (cont.)

dices	and observed relative intensities are listed in					d_o (Å)	c	l_c (Å)	hkl	$(I/I_{0}) \times 100$	
Table	2 1. The selection rules appear to be:						1.653,]	1.651, 1.650	440, 155, 063	9	
	h00:	h = 2n	h0l:	l = 2n		1.600	1.600	L.607 1.608	140, 201 946 494 449	2	
	0k0:	k = 2n	hk0:	h = 2n(?)		1.603	1.601	1.600, 1.603	240, 404, 442	5 5	
	00l:	l = 2n	hkl:	no restrict	ion	1 000	1 001,	1·600	200, 017, 120, 021	0	
	0kl:	k = 2n				1.590		1.591	353	12	
		Table 1. Powder data				1.586	1.585,	1.583, 1.587,	047, 218, 262, 345	10	
		10010 11	2 00.0			1.560	1.5/	50 1.558	406 147	5	
$d_{o}\left(\mathbf{A}\right)$		d_c (A)		hkl	$(I/I_0) \times 100$	1.530	1.59	85 1.537	156 969	9	
6.902		6.921		002	100	1.531	1.55	28 1.533	138, 208	2	
5.959		5.965		111	20	1.519	1.55	20, 1 000	523 504	6	
5.288		5.301		020	25	1.508	1 02	1.504	514	3	
4.773		4.780		112	22	1.485		1.484	947	12	
4.238		4.228		200	67	1.480		1.481	346	12	
4.209		4.208		022	68	1.473	1.475.	1.475. 1.472	264, 308, 337	5	
3.936		3.927		210	2	1.463	1.463.	1.461, 1.461,	452, 524, 318, 362	8	
3.782		3.784, 3.778		113, 211	16			1.463	,. ,		
3.613		3.608		202	69	1.451	i	1.449	048	4	
3.463		3.460		004	20	1.445]	l·445	355	8	
3.418		3.416		212	11	1.417	1.4	18, 1.418	271, 541	7	
3.308		3.300		220	48	1.404	1.40	05, 1.403	265, 066	4	
3.218		3.218		123	14	1.395	1.394,	l·396, 1·396,	229, 272, 534, 542	6	
3.170		3.174		131	10			1∙3 96			
3.000		0.000		114 019 000	50	1.383	1.38	84, 1·384	166, 0, 0, 10	5	
2.989		2.991, 2.903		210,222	11	1.356	1·3 56, 1	l·356, 1·355	460, 621, 1, 1, 10	12	
2.990		2.990		132	2 99	1.338	1.339,	1.339, 1.337,	319, 408, 437,	5	
2.097		2.000		124	10		1.337,	1+338, 1+339	613; 239; 0, 2, 10		
2.440		2.741		204 311	54	1.330	1.330,	l·331, l·330	049, 266, 462	4	
2.664		2.018, 2.013		193 931	34	1.312	1.317,	1.317, 1.318,	365, 455, 544,	6	
2.598		2.603 2.596		041 214	6		1.316,	1.318, 1.318	551, 274, 067		
2.551		2.000, 2.000		115	2	1.308	1.30	08, 1.308	329, 630	3	
2.468		2.001		042	-3	1.299	1.2	∂8, 1 •299	428,552	4	
2.451		2.450 2.454		321.025	6	1.281		1.282	373	3	
2.392		2.390		224	13	1.275	1.274,	1.274, 1.276	083, 1, 3, 10, 517	4	
2.355		2.357		125	$^{-0}_{5}$	1.269	1.20	58, 1·269	447, 249	11	
2.343		2.346		313	17	1.258	1.0	1.298	267	3	
2.338		2.338		233	9	1.244	1.24	14, 1·244	640, 282	3	
2.306		2.307		006	6	1.230	1.230,	1.230, 1.230,	419, 554, 068, 1, 1, 1	0	
2.296		$2 \cdot 298$		043	6	1.996	:	1.200	471	9	
2.178		2.176, 2.178		331, 116	39	1.918		1.918	471	5	
$2 \cdot 144$		2.141		314	7	1.210	1.203	1.213	349 569 606	.)	
2.138		$2 \cdot 134, 2 \cdot 136$		234, 242	4	1.1943	1.1936 1	-1947 1-1951	367 381 448	4	
2.120		2.114		400	poorly∫ 5		1.1936.1	·1951, 1·1943	457 616 259	U	
2.114		$2 \cdot 110$		135	resolv. (17	1.1870	1 -000, -	1.1865	268	3	
2.104		2.104		044	5	1.1751	1.174	40. J·1760	1, 3, 11 : 2, 2, 11	4	
2.030		2.034, 2.025		151, 206	29	1.1727	1.1721, 1	.1732, 1.1729	3, 3, 10; 439, 626	5	
1.990	1.5	986, 1.989, 1.989	4	12, 333, 216	24	1.1558		1.1549	376	3	
1.967		1.964, 1.971		420, 152		1.1373	1.136	57, 1·1 3 75	0, 4, 11; 653	6	
1.912	1 (1.912, 1.914		341,040	4	1.1272	1.127	8, 1.1266	732; 1, 4, 11	5	
1.892	1.5	1.004 1.009	4	22, 413, 200 944 196	21						
1.079		1.004, 1.000		244, 150	4 90	The sp	ace grou	o is probably	either <i>Pbcn-D</i> ¹ or	Phca-Dia.	
1.970		1.860 1.850		2.01	02 9	If the	verv wea	k (210) neak	is real the space of 2π	roup must	
1.854		1.851 1.859		392, 334	6	he Ph	$ra = D^{15}$ h	ut the nose	ihility that this re	floation is	
1.808	1.9	807 1.804 1.810	. 4	193 404 197	8	emurio	\mathcal{L}_{2h} , \mathcal{L}_{2h}	t vot bo mi	ad out with contain	atu All of	
1.789	1.0	1.785		306	4	spurious cannot yet be ruled out with certainty. An of					
1.783		1.781 1.779		343 414	6	the otr	ier obser	ved peaks ar	e allowed in both of	the above	
1.764		1.761 1.767		316 060	15	space a	groups.				
1.745		1.744		245	11						
1.724		1.724		335	14			Refe	rences		
1.710		1.708, 1.712		424,062	12	~	T 1 1 1				
1.697		1.695, 1.697		108, 227	5	CLARK	Е, F . W.	& DAVIS, J	. L. (1877). Amer.	J. Sci. [3],	
1.692		1.691, 1.692		137, 326	3	14,	283.				
1.682		1.682		351	19	Marig	NAC, C. ((1863). Ann	. Chim. Phys. [3],	69 , 23.	
1.675		1.678, 1.674		162, 118	21	ZAMBONINI, F. (1923). Z. Krystallogr. 58, 266.					